

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Taco Module for Python 0.1.0 documentation

Taco Module for Python

Taco is a system for bridging between scripting languages.
Its goal is to allow you to call routines written for one language from
another.
It does this by running the second language interpreter in a sub-process,
and passing messages about actions to be performed inside that interpreter.

In principle, to interface scripting languages it might be preferable
to embed the interpreter for one as an extension of the other.
However this might not be convenient or possible,
and would need to be repeated for each combination of languages.
Instead Taco only requires a “client” module and “server” script
for each language, which should be straightforward to install,
and its messages are designed to be generic so that they
can be used between any combination of languages.

For more information about Taco, please see the
Taco Homepage [http://grahambell.github.io/taco/].

Contents

	Installation
	Integration Tests

	Guide
	Starting a Taco Session

	Actions

	Return Values

	Examples
	Procedural Perl

	Object-Oriented Perl: Astro::Coords

	Client API
	taco

	taco.client

	taco.object

	taco.error

	Internal API
	Server

	Transport

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Taco Module for Python 0.1.0 documentation

Installation

The module can be installed using the setup.py script:

python setup.py install

Before doing that, you might like to run the unit tests:

PYTHONPATH=lib python -m unittest -v

For Python 2, it might be necessary to include the command discover
after the unittest module name.
If successful you should see a number of test cases being run.

Integration Tests

This package also includes further integration tests which test
the complete system.
These tests are stored in files named ti_*.py to avoid them
being found by unittest discovery with its default
parameters.
They all use the Python “client” module but a variety
of “server” scripts.

	Python

The tests using a Python “server” script can be run directly from this
package:

PYTHONPATH=lib python -m unittest discover -v -s 'ti-python' -p 'ti_*.py'

	Other Languages

The following tests all require a Taco “server” script for the
corresponding language to be installed in your search path.

	Perl

PYTHONPATH=lib python -m unittest discover -v -s 'ti-perl' -p 'ti_*.py'

	Java

PYTHONPATH=lib python -m unittest discover -v -s 'ti-java' -p 'ti_*.py'

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Taco Module for Python 0.1.0 documentation

Guide

Starting a Taco Session

A Taco “client” session is started by constructing a Taco
instance.
The constructor will run a Taco “server” script in a sub-process
and attach a TacoTransport object to the
sub-process’s standard input and standard output.

There are two ways to specify which “server” script to run:

	The lang option

This just specifies the language which the script should be using.
The script will be assumed to be called taco-lang, where
lang is the given language. For example a Taco
“client” constructed with Taco(lang='perl') will try to run
a script called taco-perl.
This script must be present in your search path for this to
be successful.

	The script option

This option allows you to specify the name of the “server” script
directly.
For example some of the integration tests run the Python “server”
script directly from this package using
Taco(script='scripts/taco-python').

Actions

The rôle of the Taco “client” class is to send actions
to the “server” script.
While the actions are intended to be generic,
the exact behavior will depend will depend on the “server”
script and what is suitable for its language.
The TacoServer documentation includes
some information about how the actions are implemented in
Python.

	Procedural Actions

These are invoked by calling Taco methods directly.

	call_class_method()

	call_function()

	construct_object()

	get_value()

	import_module()

	set_value()

	Object-oriented Actions

These are invoked via methods of TacoObject instances.

	call_method()

	get_attribute()

	set_attribute()

	Convenience Methods

These methods each return a callable which can be used to
perform a Taco action in a more natural manner.

	function()

	constructor()

	method()

Taco action messages typically include a list called args
and a dictionary called kwargs.
The Python Taco “client” fills these parameters from
the positional and keyword arguments of its method calls.

Return Values

The Taco system allows for the return of various responses to actions.
Here are some examples of Taco actions and the responses to them:

	Function Results

If you find that you need the weighted roll_dice()
function from the Acme::Dice [http://search.cpan.org/perldoc?Acme::Dice] Perl module,
you can import it and call the function as follows:

>>> from taco import Taco
>>> taco = Taco(lang='perl')
>>> taco.import_module('Acme::Dice', 'roll_dice')
>>> taco.call_function('roll_dice', dice=1, sides=6, favor=6, bias=100)
6

In this example, instantiating a Taco object starts a
sub-process running a Perl script.
This “server” script then handles the instructions to
import a module and call one of its functions,
returning the value 6.

	Object References

To allow the use of object-oriented modules such as
Acme::PricelessMethods [http://search.cpan.org/perldoc?Acme::PricelessMethods],
references to objects are returned
as instances of the TacoObject class.

>>> taco.import_module('Acme::PricelessMethods')
>>> pm = taco.construct_object('Acme::PricelessMethods')
>>> type(pm)
<class 'taco.object.TacoObject'>

These objects can be used to invoke further actions:

>>> pm.call_method('is_machine_on')
1

	Exceptions

roll_dice() raises an exception if we try to roll more than 100 dice.
The exception is caught and re-raised on the “client” side:

>>> taco.call_function('roll_dice', dice=1000)
Traceback (most recent call last):
...
taco.error.TacoReceivedError: ... Really? Roll 1000 dice? ...

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Taco Module for Python 0.1.0 documentation

Examples

	Procedural Perl

	Object-Oriented Perl: Astro::Coords

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Taco Module for Python 0.1.0 documentation

 	Examples

Procedural Perl

This example illustrates a how Taco can be used to interact with
procedural Perl modules — importing them,
calling functions, and interacting with variables.

	Calling functions to perform calculations

We begin by importing the Taco class and
constructing an instance of it which launches a Perl
sub-process.
Now we can calculate the sine of 30 degrees by calling
Perl’s sin subroutine (from the CORE:: namespace).
This should give the expected value of a half.

from taco import Taco

taco = Taco(lang='perl')

print('{0:.2f}'.format(
 taco.call_function('CORE::sin', radians(30))
))

0.50

	Importing modules

To make use of routines from other modules, they must be
imported into the Perl interpreter running in the sub-process.
The appropriate action to do this can be sent using the
import_module() method.
In the case of the Perl server, any arguments to this
method are passed to the equivalent of a use statement.
This allows us to bring the md5_hex subroutine into
the current scope.

taco.import_module('Digest::MD5', 'md5_hex')
print(
 taco.call_function('md5_hex', 'Hello from Taco')
)

9442d82de2303664e42b60e103c0ead4

	A more convenient way to call functions

Another way to call a function through Taco is by creating
a convenience callable for it.
The function() method, given the name of
a function to be called, returns an object which can
be called to invoke that function.

md = taco.function('md5_hex')
print(
 md('Useful for calling the same function multiple times')
)

47a533e6b83934f58c976de5f2b2dc5a

	Getting values

We can retrieve the value of variables using
get_value().
In this example, importing the “English” module gives a readable name
for the variable containing the operating system name.

taco.import_module('English')
print(
 taco.get_value('$OSNAME')
)

linux

	Setting values

set_value() can be used to assign a variable
on the server side.
In the case of Perl, setting the output field separator
variable $, will configure the spacing between
things which are printed out.

taco.set_value('$,', '**')

At this stage we can make use of some object-oriented
code to check that the setting of $, has taken effect.
For more information about using Taco with object-oriented
Perl modules, see the
object-oriented Perl example.
Here we print the strings 'X', 'Y' and 'Z'
to an IO::String [http://search.cpan.org/perldoc?IO::String] object and check the result.

taco.import_module('IO::String')
s = taco.construct_object('IO::String')
s.call_method('print', 'X', 'Y', 'Z')
s.call_method('pos', 0)
print(s.call_method('getline'))

X**Y**Z

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Taco Module for Python 0.1.0 documentation

 	Examples

Object-Oriented Perl: Astro::Coords

This example demonstrates interaction with object-oriented
Perl libraries via Taco.
The libraries Astro::Coords [http://search.cpan.org/perldoc?Astro::Coords], Astro::Telescope [http://search.cpan.org/perldoc?Astro::Telescope] and
DateTime [http://search.cpan.org/perldoc?DateTime] are used to perform some calculations
related to the position of Mars over Jodrell Bank
during the Queen’s speech on Christmas Day, 2010.

	Construct DateTime [http://search.cpan.org/perldoc?DateTime] object

First we set up a Taco object running the default
Taco server script implementation for Perl.
The server is then instructed to load the DateTime [http://search.cpan.org/perldoc?DateTime] module
and to construct an instance of that class.
A set of Python keyword arguments is given to the constructor
and will be turned into a flattened list of keywords and values
as required by the DateTime [http://search.cpan.org/perldoc?DateTime] constructor.
Finally the DateTime [http://search.cpan.org/perldoc?DateTime] object’s strftime method is called
to allow us to check that the date has been set correctly.

from taco import Taco
taco = Taco(lang='perl')

taco.import_module('DateTime')
qs = taco.construct_object('DateTime', year=2010, month=12, day=25,
 hour=15, minute=0, second=0)
print(
 qs.call_method('strftime', '%Y-%m-%d %H:%M:%S')
)

2010-12-25 15:00:00

Note

The actual DateTime [http://search.cpan.org/perldoc?DateTime] object will be stored in an object
cache on the server side.
The TacoObject
simply refers to it by an object number.
When the TacoObject‘s __del__
method is called, a destroy_object action
will be sent, allowing the object to be cleared
from the cache.

	Construct Astro::Coords [http://search.cpan.org/perldoc?Astro::Coords] object for Mars

Next we import the Astro::Coords [http://search.cpan.org/perldoc?Astro::Coords] module and construct an object
representing the coordinates of Mars.
Since we may want to construct several similar objects,
we use the constructor() convenience
method to get a callable which we can use to call the
class constructor.

taco.import_module('Astro::Coords')
coords = taco.constructor('Astro::Coords')
mars = coords(planet='mars')
print(
 mars.call_method('name')
)

mars

	Construct Astro::Telescope [http://search.cpan.org/perldoc?Astro::Telescope] object and apply it to Mars

The Astro::Telescope [http://search.cpan.org/perldoc?Astro::Telescope] class offers information about
a number of telescopes.
It has a class method which can be used to fetch a list
of supported telescope identifiers.
This Perl method needs to be called in list context
so we specify context='list' in the method call.
If you come across a function or method which requires
a keyword argument called context, this facility can
be disabled by setting the disable_context
attribute of the Taco object,
for example by specifying disable_context=True
in its constructor.

taco.import_module('Astro::Telescope')
telescopes = taco.call_class_method('Astro::Telescope',
 'telNames', context='list')
print('JODRELL1' in telescopes)

True

Now that we have confirmed that the Perl module knows about
Jodrell Bank, we can set this as the location in our object
representing Mars.
The Python positional argument 'JODRELL1' to the
construct_object()
method is passed to the Perl constructor at the start of its
list of arguments.

In this example, construct_object()
will return a TacoObject,
but when this is passed to another Taco method
— in this case call_method() —
it will automatically be converted to a reference to
the object in the cache on the server side.

We also need to set the date and time, which we can do by
calling the Astro::Coords [http://search.cpan.org/perldoc?Astro::Coords] object’s datetime method.
However as we will want to be able to repeat this easily,
we can use the convenience routine method()
to get a Python callable for it.
This can then be called with the object representing the
date and time of the Queen’s speech, which is again
automatically converted to a reference to the corresponding
Perl object.

Finally we can have our Astro::Coords [http://search.cpan.org/perldoc?Astro::Coords] object calculate the
elevation of Mars for this time and place.

mars.call_method('telescope',
 taco.construct_object('Astro::Telescope', 'JODRELL1'))
datetime = mars.method('datetime')
datetime(qs)
print('{0:.1f}'.format(
 mars.call_method('el', format='degrees')
))

8.2

	Investigate the transit time

So Mars was above the horizon (positive elevation), but it was still
pretty low in the sky.
We can have Astro::Coords [http://search.cpan.org/perldoc?Astro::Coords] determine the transit time — the time
at which it was highest.
(In this method call, event=0 requests the nearest transit,
either before or after the currently configured time.)

mt = mars.call_method('meridian_time', event=0)
print(
 type(mt)
)
print(
 mt.call_method('strftime','%H:%M')
)

<class 'taco.object.TacoObject'>
12:52

Note

The Perl meridian_time method has returned an
object, which is now being referred to by a
TacoObject instance.
Taco handles objects returned from functions and methods
in the same way as objects explicitly constructed
with construct_object().

We can now set the Mars object’s time to the meridian time
using our convenience callable, and find the corresponding elevation.

datetime(mt)
print('{0:.1f}'.format(
 mars.call_method('el', format='degrees')
))

13.0

	Check the distance to the Sun

As a final example, we will calculate the distance (across the sky)
between Mars and the Sun.
First we construct an object representing the Sun’s position.

sun = coords(planet='sun')
print(
 sun.call_method('name')
)

sun

Then, after setting the Sun object to the same time,
we can request the distance between the two objects.
Astro::Coords [http://search.cpan.org/perldoc?Astro::Coords] returns the distance as another object,
but we can call its degrees method to obtain
a value in degrees.

sun.call_method('datetime', mt)
print('{0:.1f}'.format(
 mars.call_method('distance', sun).call_method('degrees')
))

9.9

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Taco Module for Python 0.1.0 documentation

Client API

taco

The taco module imports the Taco class
from the taco.client module, allowing it to be imported
as follows:

from taco import Taco

taco.client

	
class taco.client.Taco(lang=None, script=None, disable_context=False)

	Taco client class.

Example:

from taco import Taco

taco = Taco(lang='python')

taco.import_module('time', 'sleep')
taco.call_function('sleep', 5)

	
call_class_method(class_, name, *args, **kwargs)

	Invoke a class method call in the connected server.

The context (void / scalar / list) can be specified as a
keyword argument “context” unless the “disable_context” attribute
has been set.

	
call_function(name, *args, **kwargs)

	Invoke a function call in the connected server.

The context (void / scalar / list) can be specified as a
keyword argument “context” unless the “disable_context” attribute
has been set.

	
construct_object(class_, *args, **kwargs)

	Invoke an object constructor.

If successful, this should return a TacoObject
instance which references the new object. The given arguments and
keyword arguments are passed to the object constructor.

	
get_class_attribute(class_, name)

	Request the value of a class (static) attribute.

	
get_value(name)

	Request the value of the given variable.

	
import_module(name, *args, **kwargs)

	Instruct the server to load the specified module.

The interpretation of the arguments depends on the language of
the Taco server implementation.

	
set_class_attribute(class_, name, value)

	Set the value of a class (static) attribute.

	
set_value(name, value)

	Set the value of the given variable.

	
function(name)

	Convience method giving a function which calls call_function.

This example is equivalent to that given for this class:

sleep = taco.function('sleep')
sleep(5)

	
constructor(class_)

	Convience method giving a function which calls construct_object.

For example constructing multiple datetime objects:

taco.import_module('datetime', 'datetime')
afd = taco.construct_object('datetime', 2000, 4, 1)

Could be done more easily:

datetime = taco.constructor('datetime')
afd = datetime(2000, 4, 1)

taco.object

	
class taco.object.TacoObject(client, number)

	Taco object class.

This class is used to represent objects by Taco actions.
Instances of this class will returned by methods of Taco
objects and should not normally be constructed explicitly.

The objects reside on the server side and are referred to by instances
of this class by their object number. When these instances are
destroyed the destroy_object action is sent automatically.

	
call_method(*args, **kwargs)

	Invoke the given method on the object.

The first argument is the method name.

The context (void / scalar / list) can be specified as a
keyword argument “context” unless the “disable_context” attribute
of the client has been set.

	
get_attribute(*args, **kwargs)

	Retrieve the value of the given attribute.

	
set_attribute(*args, **kwargs)

	Set the value of the given attribute.

	
method(name)

	Convenience method giving a function which calls a method.

Returns a function which can be used to invoke a method on
the server object. For example:

strftime = afd.method('strftime')
print(strftime('%Y-%m-%d'))

taco.error

	
exception taco.error.TacoError

	Base class for specific Taco client exceptions.

Note that the client can also raise general exceptions,
such as ValueError, if its methods are called with invalid
arguments.

	
exception taco.error.TacoReceivedError

	An exception raised by the Taco client.

Raised if the client receives an exception action. The exception
message will contain any message text received in the exception action.

	
exception taco.error.TacoUnknownActionError

	An exception raised by the Taco client.

Raised if the client receives an action of an unknown type.

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Taco Module for Python 0.1.0 documentation

Internal API

	Server
	taco.server

	Transport
	taco.transport

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Taco Module for Python 0.1.0 documentation

 	Internal API

Server

taco.server

	
class taco.server.TacoServer

	Taco server class.

This class implements a Taco server for Python.

	
run()

	Main server function.

Enters a message handling loop. The loop exits on failure to
read another message.

	
call_class_method(message)

	Call the class method specified in the message.

The context, if present in the message, is ignored.

	
call_function(message)

	Call the function specified in the message.

The context, if present in the message, is ignored.

	
call_method(message)

	Call an object method.

Works similarly to call_function.

	
construct_object(message)

	Call an object constructor.

Works similarly to call_function.

	
destroy_object(message)

	Remove an object from the objects dictionary.

	
get_attribute(message)

	Get an attribute value from an object.

	
get_class_attribute(message)

	Get a static attribute from a class.

	
get_value(message)

	Get the value of a variable.

If the variable name contains ”.”-separated components, then it is
looked up using the _find_attr function.

	
import_module(message)

	Import a module or names from a module.

Without arguments, the module is imported and the top level package
name is inserted into the “ns” dictionary.

With “args” specified, it is used as a list of names to import
from the module, and those names are inserted into the “ns”
dictionary.

Currently any “kwargs” in the message are ignored.

	
set_attribute(message)

	Set an attribute value of an object.

	
set_class_attribute(message)

	Set a static attribute from a class.

	
set_value(message)

	Set the value of a variable.

If the variable name contains ”.”-separated components, then it is
looked up using the _find_attr function.

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Taco Module for Python 0.1.0 documentation

 	Internal API

Transport

taco.transport

	
class taco.transport.TacoTransport(in_, out, from_obj=None, to_obj=None)

	Taco transport class.

Implements the communication between Taco clients and servers.

	
read()

	Read a message from the input stream.

The decoded message is returned as a data structure, or
None is returned if nothing was read.

	
write(message)

	Write a message to the output stream.

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Taco Module for Python 0.1.0 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 taco	

 	
 	
 taco.client	

 	
 	
 taco.error	

 	
 	
 taco.object	

 	
 	
 taco.server	

 	
 	
 taco.transport	

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Taco Module for Python 0.1.0 documentation

Index

 C
 | D
 | F
 | G
 | I
 | M
 | R
 | S
 | T
 | W

C

 	

 	call_class_method() (taco.client.Taco method)

 	

 	(taco.server.TacoServer method)

 	call_function() (taco.client.Taco method)

 	

 	(taco.server.TacoServer method)

 	call_method() (taco.object.TacoObject method)

 	

 	(taco.server.TacoServer method)

 	

 	construct_object() (taco.client.Taco method)

 	

 	(taco.server.TacoServer method)

 	constructor() (taco.client.Taco method)

D

 	

 	destroy_object() (taco.server.TacoServer method)

F

 	

 	function() (taco.client.Taco method)

G

 	

 	get_attribute() (taco.object.TacoObject method)

 	

 	(taco.server.TacoServer method)

 	get_class_attribute() (taco.client.Taco method)

 	

 	(taco.server.TacoServer method)

 	

 	get_value() (taco.client.Taco method)

 	

 	(taco.server.TacoServer method)

I

 	

 	import_module() (taco.client.Taco method)

 	

 	(taco.server.TacoServer method)

M

 	

 	method() (taco.object.TacoObject method)

R

 	

 	read() (taco.transport.TacoTransport method)

 	

 	run() (taco.server.TacoServer method)

S

 	

 	set_attribute() (taco.object.TacoObject method)

 	

 	(taco.server.TacoServer method)

 	set_class_attribute() (taco.client.Taco method)

 	

 	(taco.server.TacoServer method)

 	

 	set_value() (taco.client.Taco method)

 	

 	(taco.server.TacoServer method)

T

 	

 	Taco (class in taco.client)

 	taco.client (module)

 	taco.error (module)

 	taco.object (module)

 	taco.server (module)

 	taco.transport (module)

 	

 	TacoError

 	TacoObject (class in taco.object)

 	TacoReceivedError

 	TacoServer (class in taco.server)

 	TacoTransport (class in taco.transport)

 	TacoUnknownActionError

W

 	

 	write() (taco.transport.TacoTransport method)

 Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		Taco Module for Python 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Graham Bell.
 Created using Sphinx 1.3.5.

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

